Kalman Based Finite State Controller for Partially Observable Domains
نویسندگان
چکیده
A real world environment is often partially observable by the agents either because of noisy sensors or incomplete perception. Moreover, it has continuous state space in nature, and agents must decide on an action for each point in internal continuous belief space. Consequently, it is convenient to model this type of decisionmaking problems as Partially Observable Markov Decision Processes (POMDPs) with continuous observation and state space. Most of the POMDP methods whether approximate or exact assume that the underlying world dynamics or POMDP parameters such as transition and observation probabilities are known. However, for many real world environments it is very difficult if not impossible to obtain such information. We assume that only the internal dynamics of the agent, such as the actuator noise, interpretation of the sensor suite, are known. Using these internal dynamics, our algorithm, namely Kalman Based Finite State Controller (KBFSC), constructs an internal world model over the continuous belief space, represented by a finite state automaton. Constructed automaton nodes are points of the continuous belief space sharing a common best action and a common uncertainty level. KBFSC deals with continuous Gaussian-based POMDPs. It makes use of Kalman Filter for belief state estimation, which also is an efficient method to prune unvisited segments of the belief space and can foresee the reachable belief points approximately calculating the horizon N policy. KBFSC does not use an "explore and update" approach in the value calculation as TD-learning. Therefore KBFSC does not have an extensive exploration-exploitation phase. Using the MDP case reward and the internal dynamics of the agent, KBFSC can automatically construct the finite state automaton (FSA) representing the approximate optimal policy without the need for discretization of the state and observation space. Moreover, the policy always converges for POMDP problems.
منابع مشابه
Robust Tracking Control of Satellite Attitude Using New EKF for Large Rotational Maneuvers
Control of a class of uncertain nonlinear systems, which estimates unavailable state variables, is considered. A new approach for robust tracking control problem of satellite for large rotational maneuvers is presented in this paper. The features of this approach include a strong algorithm to estimate attitude, based on discrete extended Kalman filter combined with a continuous extended Kalman ...
متن کاملSynthesis of Hierarchical Finite-State Controllers for POMDPs
We develop a hierarchical approach to planning for partially observable Markov decision processes (POMDPs) in which a policy is represented as a hierarchical finite-state controller. To provide a foundation for this approach, we discuss some extensions of the POMDP framework that allow us to formalize the process of abstraction by which a hierarchical controller is constructed. Then we describe...
متن کاملAnalyzing and Escaping Local Optima in Planning as Inference for Partially Observable Domains
Planning as inference recently emerged as a versatile approach to decision-theoretic planning and reinforcement learning for single and multi-agent systems in fully and partially observable domains with discrete and continuous variables. Since planning as inference essentially tackles a non-convex optimization problem when the states are partially observable, there is a need to develop techniqu...
متن کاملGeneralized and bounded policy iteration for finitely-nested interactive POMDPs: scaling up
Policy iteration algorithms for partially observable Markov decision processes (POMDP) offer the benefits of quick convergence and the ability to operate directly on the solution, which usually takes the form of a finite state controller. However, the controller tends to grow quickly in size across iterations due to which its evaluation and improvement become costly. Bounded policy iteration pr...
متن کاملRobust Tracking Control of Satellite Attitude Using New EKF for Large Rotational Maneuvers
Control of a class of uncertain nonlinear systems, which estimates unavailable state variables, is considered. A new approach for robust tracking control problem of satellite for large rotational maneuvers is presented in this paper. The features of this approach include a strong algorithm to estimate attitude, based on discrete extended Kalman filter combined with a continuous extended Kalman ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006